
Environmental
Audio

eXtensions™

EAX.fm Page 1 Monday, August 31, 1998 12:06 PM

Copyright © 1998 by Creative Technology Ltd. All rights reserved.
Version 1.0 (CLI), June 1998

Information in this document is subject to change without notice and does not represent a
commitment on the part of Creative Technology Ltd. No part of this manual may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying and
recording, for any purpose without the written permission of Creative Technology Ltd. The
software described in this document is furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. It is against the law to copy the
software on any other medium except as specifically allowed in the license agreement. The
licensee may make one copy of the software for backup purposes.

Trademarks
Creative, Sound Blaster, and the Creative logo are registered trademarks, and Environmetal Audio,
E-mu Environmental Modeling, FourPointSurround, EMU10K1, Creative Multi Speaker Surround,
EAX, Environmental Audio eXtensions, and the Sound Blaster Live! logo are trademarks of
Creative Technology Ltd. in the United States and/or other countries.

E-mu, E-mu Systems, and SoundFont are registered trademarks of E-mu Systems, Inc.

Cambridge Soundworks is a registered trademark and PCWorks is a trademark of Cambridge
Soundworks Inc., Newton, MA.

Microsoft, MS-DOS, Windows, DirectSound, DirectX, and DirectSound 3D are registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

All other brand and product names listed are trademarks or registered trademarks of their respective
holders.

EAX.fm Page 2 Monday, August 31, 1998 12:06 PM

Contents 3

Contents
Introducing EAX .. 5

DirectSound’s Solutions .. 5
EAX’s Solutions .. 6

3D Effects ... 6
Environments .. 7
An Open Standard .. 7

How EAX Fits Into DirectSound .. 8
DirectSound Property Sets .. 8
Primary and Secondary Sound Buffers 8

Sound Buffers ... 8
Primary Sound Buffer (The Listener) 9
Secondary Sound Buffers (Sound Sources) 9
Objects and Interfaces .. 10

EAX’s Role In Direct Sound ... 10
Setting the Secondary-Buffer Property 10
Setting the Primary-Buffer Properties 11

Creating Buffers and Interfaces ... 12

Setting EAX Properties ... 15
Setting Properties Through a Property-Set Interface 15

Querying For EAX Support .. 15
Setting a Sound-Source Property .. 16
Setting a Listener Environment .. 16
Tweaking the Environment ... 17
Setting All the Listener Properties At Once 17
Setting a Reverb Preset ... 17
Getting a Property Value .. 19

Setting Properties Using the CReverb and
CReverbBuffer Classes ... 19
CReverb Class .. 19
Constructor ... 19
Public Methods ... 20
CReverbBuffer .. 21

EAX.fm Page 3 Monday, August 31, 1998 12:06 PM

4 Contents

Constructor ..21
Public Methods ..21
Instantiating an EAX Class ...22
Setting Individual Properties ...22
Setting All Properties at One Time22
Setting a Preset ..23

EAX Properties ... 24
Sound-Source Property Set ..24

Reverb Mix Property ...24
Listener Property Set ...25

Environment Property ...25
Volume Property ..27
Decay Time Property ..27
Damping Property ...28

Creating an EAX Object .. 29

Future Plans for EAX ... 31

EAX.fm Page 4 Monday, August 31, 1998 12:06 PM

Environmental Audio eXtensions 5

Environmental
Audio
eXtensions

Creative®’s Environmental Audio eXtensions (EAX™) are property sets of the
Microsoft® DirectX™ game and multimedia programming environment for
Windows® 95 . EAX adds 3D reverb capabilities to the DirectSound™
component of DirectX and provides an API (Application Programming
Interface) that is an integral part of the DirectSound API. This document
describes EAX, its place in DirectSound, its API, and how to use EAX in your
own code.

Introducing EAX
A primary goal of computer gaming is to produce a realistic 3D world for the
player. Creating the aural component of that world has always lagged behind
the visual component. It’s not uncommon to find a computer displaying
sophisticated 3D graphics with texture mapping, shading, multiple light
sources, haze, and more while one or two tinny speakers spit out monaural
sound.

DirectSound’s Solutions

Microsoft’s DirectSound, the aural component of DirectX, provides a major
first step for creating a realistic 3D aural world: it creates an easy-to-use
programming environment for 3D aural modeling in C or C++. You can use
DirectSound to create separate sound sources that move around realistically in
the 3D aural world along with their corresponding objects in the 3D visual
world—as the berserker warrior falls off the cliff, the player perceives his
scream going with him.

DirectSound keeps the nitty gritty of audio hardware at arm’s length from the
programmer. The programmer uses DirectSound’s relatively simple API to
create sound sources, set their 3D positions and velocities (if moving), and take
care of other decisions about the quality and placement of sounds in the aural
world. DirectSound, through the audio driver installed in a computer, does the
work of translating sound-source waveforms, positions, velocity, and more into
a mix that ultimately comes out in realistic 3D form through the player’s
speakers or headphones.

EAX.fm Page 5 Monday, August 31, 1998 12:06 PM

6 Environmental Audio eXtensions

Although DirectSound provides a number of sophisticated 3D aural effects
such as Doppler effect, rolloff, interaural intensity and time differences, it lacks
one very important effect: reverberation. Without reverb, a listener can tell
where each sound source is located, but has no idea of the environment in whic
the sources are located. A sword clanked in a small padded cell should sound
much different than the same sword clanked in a large cathedral, and it’s reverb
that tells the story. Without reverb, sound sources are naked and lack
warmth—the aural equivalent of a visual world without shadows, haze, and
independent light sources.

EAX’s Solutions

Creative’s EAX property sets add reverb to DirectSound. As DirectSound
property sets, they use the DirectSound API and the COM (Component Object
Model) used throughout the DirectX environment. You can create an EAX
interface for each sound source in the 3D aural world and set the reverb amount
for individual sound sources. You can also control the overall quality of the
reverb the listener hears, tweaking reverberation factors such as:

• Apparent size of the room surrounding the listener

• Amount and quality of the reverb’s decay

• Volume of total reverberation.

These effects combine to add a visceral realism to DirectSound’s 3D aural
environment, an often subliminal context that can give an emotional depth to
the 3D world of the player. All of this works even when the visual component
of the 3D world is out of sight. Think, for example, of a single candle next to a
pool of water in dark surroundings. When a drop of water hits the pool and you
hear long and luscious reverb on the plink of the drop, your mind senses the
vast cavern surrounding the pool even though you can’t see it.

If you don’t care for reverb in some circumstances, you can turn it off on a per-
sound-source basis or turn it off altogether.

3D Effects

Because EAX is thoroughly integrated with DirectSound, it enhances the 3D
aural world created by DirectSound. When you move a sound source in
relation to the listener, EAX automatically adjusts the reverb for the sound
source (increasing the ratio of reverb for a source moving away, for example) to
make the reverb sound realistic for a moving sound source. None of
DirectSound’s 3D effects are lost in the mix; they’re augmented with reverb
calculated to enhance the feeling of three dimensions.

EAX.fm Page 6 Monday, August 31, 1998 12:06 PM

Environmental Audio eXtensions 7

Environments

EAX provides reverb environments that make it easy to simulate any one of a
large variety of acoustic surroundings. Each EAX environment simulates a
given set of acoustic surroundings such as an auditorium, a padded cell, an
arena, a stone corridor, underwater, a city street, and so on. All you have to do
is specify the environment you want. EAX takes care of the rest, supplying
realistic 3D reverb for all the sound sources within the environment you
choose. You can, if you wish, tweak the reverb quality of any environment to
get the exact acoustic surroundings you want.

An Open Standard

As DirectSound property sets, EAX is an open standard that takes advantage of
any hardware-accelerated card (such as Sound Blaster® Live!) that provides
the necessary reverb processing. When your application first asks for an EAX
interface, DirectSound queries the card’s audio driver to see if it supports
property sets, then notifies the application so it can take advantage of EAX
reverb if it’s available.

As an open standard, EAX works not only with Creative’s cards, but with any
manufacturer’s cards that care to take advantage of the EAX reverb property
sets.

EAX.fm Page 7 Monday, August 31, 1998 12:06 PM

8 Environmental Audio eXtensions

How EAX Fits Into DirectSound
To use EAX well, it helps to understand its place in the DirectSound
environment. Microsoft has extensive documentation explaining DirectSound,
so we won’t go into too many DirectSound details here, but will explore the
main concepts you’ll need to understand how EAX fits in.

DirectSound Property Sets

If you’re unfamiliar with property sets, Microsoft introduced them as an
extension of DirectSound in release 5.0 of DirectX. Property sets are intended
to provide access to advanced features of sound cards that aren’t available
through the DirectSound API. In other words, property sets make DirectSound
extensible.

As the name suggests, a property set is a collection of properties, each with a
setting or settings. An application checks first to see if the audio driver on the
computer can support the property set. If it can, the application sets values for
one, some, many, or all of the properties to control the effects provided by the
property set.

A third-party hardware developer can create its own property set and then
support the property set within the audio driver for an audio card. Each
property set has a unique identifier, a GUID (Globally Unique Identifier),
defined by the set creator, meant to be unique around the world for all time.

When an application wants to use a property set, it asks DirectSound for a
property-set interface. The application may then query the interface, using the
desired property set’s GUID, to see if the sound card supports the property set.
If the set is supported, the application can set a property by specifying the
property set (by GUID), a property within that set (by number), and a value or
array of values for that property. (It may also specify an instance parameter,
but this is an uncommon occurrence.) The application can also get a property’s
current setting by specifying GUID and property number.

Primary and Secondary Sound Buffers

Primary and secondary sound buffers are important parts of the DirectSound
environment. They provide a mechanism for creating sound sources and a
listener in a 3D aural world.

Sound Buffers

Sound buffers are used throughout DirectSound to contain a waveform table, a
set of values that—converted to an analog signal—produce sound on an audio
system. The application using DirectSound is responsible for providing the

EAX.fm Page 8 Monday, August 31, 1998 12:06 PM

Environmental Audio eXtensions 9

waveform data for a sound buffer (but usually not the primary sound buffer)
and then telling DirectSound how to play back that waveform data. An
application can synthesize the waveform data for a sound buffer, insert a sound
sample in the buffer, or stream audio to the buffer for playback.

Primary Sound Buffer (the Listener)

DirectSound always has a single primary buffer—never more, never less—to
feed waveform data directly to the audio system through a DAC (Digital-to-
Audio Converter). Although the primary buffer provides only a single
waveform table, it can support mono or stereo by interleaving samples for each
channel within a single table.

Because the primary buffer is the direct waveform feed to the outside world and
the player, it represents the listener in the 3D aural world, and is often referred
to as such. DirectSound can (if set to work simulate a 3D environment) assign
3D settings to the primary buffer: a location, velocity, the listener’s orientation
(looking up, down, left, or right), and so on.

When an audio application runs, the primary buffer receives a mix of waveform
data from other sound sources in the 3D aural world. DirectSound keeps track
of the location of the other sound sources in relation to the listener and alters
their output to simulate three dimensions. It may, for example, reduce a sound
source’s volume as it increases its distance from the listener, or add a Doppler
effect if the source comes whooshing by the listener. An application rarely
writes waveform data directly to the primary buffer, which is almost always
under the direct control of DirectSound. If an application does take over
writing to the primary buffer, it takes over the job of mixing sound sources.

DirectSound allows the application to be ignorant of primary buffer specifics:
how and where the buffer is maintained, how the mix occurs. DirectSound
handles the details of mixing sound sources, feeding the mix to the primary
buffer, and working with the audio card to send the primary buffer contents to
the outside world.

Secondary Sound Buffers (Sound Sources)

DirectSound supports as many secondary sound buffers as the host system is
able to accommodate in computer RAM or sound-card RAM. Each of these
buffers represents a sound source. Each holds a waveform table created by the
application for playback and plays back the waveform table as directed by the
application. When DirectSound is set to simulate a 3D environment, the
application can assign a secondary buffer’s position in the 3D aural world as
well as its velocity (if it’s in motion), its sound cones (for directional sound
projection), its minimum-maximum distances from the listener, and so on.

EAX.fm Page 9 Monday, August 31, 1998 12:06 PM

10 Environmental Audio eXtensions

Objects and Interfaces

Because DirectSound is object oriented, it creates each sound buffer—the
primary and any secondary buffers—as objects. To provide application control
for each sound object, DirectSound creates a standard interface (also an object)
tied to each sound object. An application controls each sound buffer through
the buffer’s interface by calling methods on the interface. An application can,
for example, call the method SetVolume on a buffer’s standard interface to set
the buffer’s playback volume.

DirectSound gets a little more complicated when you use it to create a 3D aural
world: it requires two interfaces for each buffer. The first interface is the
standard buffer interface that sets non-3D buffer characteristics such as
playback volume or frequency. The second interface is a 3D buffer interface
that sets 3D buffer characteristics such as location or velocity.

When you want to use a property set with a 3D buffer, you work with three
interfaces: the standard buffer interface for non-3D characteristics, the 3D
buffer interface for 3D characteristics, and a property-set interface to set special
buffer properties. The property-set interface allows the application to first
query to see if a particular property set exists, and then—if it’s there—to set
property values within the set and to read current property values.

EAX’s Role In Direct Sound

EAX is comprised of two different property sets. The first, called the sound-
source property set, applies directly to individual secondary buffers (sound
sources). It has a single property. The second set, called the listener property
set, applies only to the primary buffer (the listener). It has four properties.

Setting the Secondary-Buffer Property

The single property in the sound-source property set (called Reverb Mix,
described in detail later in this document) allows the application to set the ratio
of the reverb to the sound source. Most applications don’t set this property for
a sound buffer because if it’s not set, EAX maintains the reverb/source ratio
automatically. To use the property with a secondary buffer, an application
requests a property-set interface for the buffer. When it gets the interface, it
calls the Set method on the interface and specifies the EAX sound-source
GUID, specifies the Reverb Mix property by number, and provides a pointer to
the ratio value it wants to set. That ratio value applies only to this secondary
buffer and not to any other buffers.

EAX.fm Page 10 Monday, August 31, 1998 12:06 PM

Environmental Audio eXtensions 11

Setting the Primary-Buffer Properties

The four properties in the listener property set all work only on the primary
buffer. Because of the way DirectSound works, you can only use this set in the
property-set interface of a secondary buffer—not in the property-set interface
of the primary buffer. You can use the property-set interface of any secondary
buffer, but you must remember when using the four listener properties that they
affect the primary buffer as it’s seen by all other secondary buffers. In other
words, if you set a primary-buffer property in one secondary buffer interface,
that primary property is set to the same value in all other secondary buffer
interfaces.

The properties in the listener property set control the quality of the reverb as
perceived by the listener; one sets a reverb environment, the other three adjust
that environment. Any one of these settings applies to all the mixed sound
sources—but is scaled for each individual source depending on its position or
its individual Reverb Mix setting. EAX adds reverb only after DirectSound has
added all of its 3D effects, so the sound sources retain their original 3D quality
and have it enhanced by 3D reverb effects.

To set primary-buffer properties, an application requests a property-set
interface for a secondary buffer—or it can use an existing property-set interface
if it received one earlier while setting secondary-buffer properties. The
application calls the Set method on the interface and passes to it the listener
property-set GUID, the property ID, and a pointer to the value it wants to set.
EAX applies the new property setting to the primary buffer regardless of where
the property was set.

EAX.fm Page 11 Monday, August 31, 1998 12:06 PM

12 Environmental Audio eXtensions

Creating Buffers and Interfaces
To use EAX in an application, you must first start DirectSound. You then
create appropriate sound buffers and create three interfaces for each buffer:

• Standard interface to control fundamental buffer behavior (playback
volume, frequency, and so on)

• 3D interface to control 3D behavior (position, velocity, and so on)

• Property-set interface to set EAX properties for the buffer

To do so, follow these steps, illustrated with sample code:

1. Instantiate a DirectSound object to start DirectSound, then use the
IDirectSound interface to control the DirectSound object:
LPDIRECTSOUND pDirectSoundObj;
DirectSoundCreate(NULL, &pDirectSoundObj, NULL);
pDirectSoundObj->SetCooperativeLevel(hWnd, DSSCL_EXCLUSIVE);

Creating the DirectSound object gives the application a pointer to the
interface for that object. You can use the interface as shown in line 3 of
the sample above to set DirectSound’s status: its cooperative level,
number of speakers, and so forth.

2. Instantiate a new 3D primary buffer :
LPDIRECTSOUNDBUFFER pPrimaryBuf;
DSBUFFERDESC desc;
...
desc.dwFlags = DSBCAPS_PRIMARYBUFFER | DSBCAPS_CTRL3D;
pDirectSoundObj->CreateSoundBuffer(&desc, &pPrimaryBuf, NULL);

The flags DSBCAPS_PRIMARYBUFFER and DSBCAPS_CTRL3D
specify a 3D primary buffer.

Creating the primary buffer gives the application a pointer to the buffer’s
standard interface. Note that the new buffer you create replaces the
default primary buffer created when you instantiated the DirectSound
object.

3. Get a 3D interface (called IDirectSound3DListener) for the new primary
buffer:
LPDIRECTSOUND3DLISTENER pListener;
pPrimaryBuf->QueryInterface(IID_IDirectSound3DListener

(void**)&pListener);

You can use this interface to control listener-specific 3D aspects of the
primary buffer behavior—listener orientation, position, velocity, and so
forth.

EAX.fm Page 12 Monday, August 31, 1998 12:06 PM

Environmental Audio eXtensions 13

4. Instantiate a secondary buffer for each sound source in the 3D aural
world:
LPDIRECTSOUNDBUFFER pSecondaryBuf[n];
DSBUFFERDESC desc;
...
desc.dwFlags = DSBCAPS_CTRL3D | ...
pDirectSoundObj->CreateSoundBuffer(&desc, &pSecondaryBuf[i], NULL);

The flag DSBCAPS_CTRL3D makes the buffer a 3D buffer.

Each secondary buffer creation gives the application a pointer to the
buffer’s standard interface.

5. Get a 3D-secondary-buffer interface (called IDirectSound3DBuffer) for
each new secondary buffer:
LPDIRECTSOUND3DBUFFER p3Dbuf[n];
...
pSecondaryBuf[i]->QueryInterface(IID_IDirectSound3DBuffer,

(void **)&p3Dbuf[i]);

Each of these interfaces controls 3D aspects of a secondary buffer’s
behavior.

6. Establish a property-set interface for the primary buffer (the listener).
Because a DirectSound quirk doesn’t allow an application to use a
property set directly with the primary buffer interface, your application
must use one of the secondary buffer’s property-set interfaces to set EAX
listener properties. You can get a pointer to an interface from
DirectSound:
LPKSPROPERTYSET pReverb;
p3Dbuf[0]->QueryInterface(IID_IKsPropertySet, (void**)&pReverb);

You get a property-set interface for a buffer by calling QueryInterface on
the buffer’s 3D interface. It writes a pointer to the property-set interface.
(This example uses the first secondary buffer you created, buffer 0. You
could, in fact, use any secondary buffer.)

You can use the property-set interface to set EAX listener properties by
specifying the EAX GUID and appropriate listener property numbers as
described in “Setting EAX Properties” on page 15.

Note that if you ask for a property-set interface and the audio driver
doesn’t support property sets, QueryInterface will fail.

7. If you want to directly control the amount of a single sound source’s
reverb, get a property-set interface for the secondary buffer of each sound
source you want to control:
LPKSPROPERTYSET pReverbBuffer[n];
...
p3Dbuf[i]->QueryInterface(IID_IKsPropertySet, (void**)

&pReverbBuffer[i]);

This example gets a property-set interface for each secondary buffer.

EAX.fm Page 13 Monday, August 31, 1998 12:06 PM

14 Environmental Audio eXtensions

You can use each secondary buffer’s property-set interface to set EAX
properties by specifying the EAX GUID and a property number as
described in “Setting EAX Properties” on page 15.

Note that most programs don’t directly control the amount of each sound
source’s reverb; they leave control to EAX, which automatically sets
reverb according to the sound source’s distance from the listener. If your
program doesn’t need to control each sound source’s reverb directly, then
it can skip this step completely.

EAX.fm Page 14 Monday, August 31, 1998 12:06 PM

Environmental Audio eXtensions 15

Setting EAX Properties
Once you’ve created primary and secondary buffers and established three
interfaces (standard, 3D, and property-set) for each buffer you want to control,
you can set EAX properties in either of two ways:

• You can set properties directly through DirectSound’s property-set
interface

• You can set properties using instances of two C++ classes—CReverb and
CReverbBuffer—that are supplied with EAX as header and source files
for each class.

Setting Properties Through a Property-Set Interface

A property-set interface offers three methods: QuerySupport, Set, and Get.
These methods all require a GUID that identifies a property set and the ID
number of a property in that set. When you use these methods with EAX, it’s
important to remember that EAX is really two property sets:

• The EAX sound-source property set, which applies to a sound source (a
secondary buffer) and contains a single property. Its GUID is the constant
DSPROPSETID_EAXBUFFER_ReverbProperties, defined in the
header file EAX.H.

• The EAX listener property set, which applies to the listener (the primary
buffer) and contains four properties. Its GUID is the constant
DSPROPSETID_EAX_ReverbProperties, defined in the header file
EAX.H.

Querying for EAX Support

Before your application tries to work with EAX properties, you may want it to
check to be sure that the audio driver supports the two EAX property sets. To
do so, you call QuerySupport on the property-set interface of any buffer.

QuerySupport can query to see if either EAX property set exists or it can
query to see if an individual EAX property is supported. In both cases,
QuerySupport requires the application to pass it the GUID of the property set
being queried along with a property number. If you want to query for the
listener property set, pass the listener property set GUID along with the
constant DSPROPERTY_EAX_ALL as the property number. If you want to
query for the sound-source property set, pass the sound-source property set
GUID along with the constant DSPROPERTY_EAXBUFFER_ALL as the
property number.

The following sample code queries the EAX interface pointed to by pReverb.
It asks if it supports the EAX listener property set, then checks to see if the

EAX.fm Page 15 Monday, August 31, 1998 12:06 PM

16 Environmental Audio eXtensions

value returned includes flags that show support for getting and setting all
properties within the set:
ULONG support=0;
if (FAILED(pReverb->QuerySupport(DSPROPSETID_EAX_ReverbProperties,

 DSPROPERTY_EAX_ALL, &support)))

AfxMessageBox("EAX not supported");

if ((support & (KSPROPERTY_SUPPORT_GET|KSPROPERTY_SUPPORT_SET)) !=

 (KSPROPERTY_SUPPORT_GET|KSPROPERTY_SUPPORT_SET))
AfxMessageBox("EAX not supported");

Setting a Sound-Source Property

The single property in the EAX sound-source property set determines the
reverb/source ratio for that sound source (as described in “Sound-Source
Property Set” on page 24). To set it, you use the property-set interface of the
buffer you want to affect. You then call Set on the interface:
float reverbMix=1.0F;
pReverbBuffer[i]
->Set(DSPROPSETID_EAXBUFFER_ReverbProperties,
 DSPROPERTY_EAXBUFFER_REVERBMIX, NULL, 0, &reverbMix, sizeof(float));

The first argument you pass is the GUID of the EAX sound-source property set.
The second argument is a constant (defined in EAX.H) that identifies the
Reverb Mix property (the only property in the set). The third and fourth
arguments define a parameter, which isn’t used by EAX, so they receive NULL
and 0. The fifth and sixth arguments pass the property’s new value. The fifth is
a pointer to the value, the sixth gives the size of the value.

Setting a Listener Environment

The most important of the four properties in the EAX listener property set is
Environment. This property (described in “Listener Property Set” on page 25)
defines the size and acoustic quality of the apparent room in which the listener
is located. To set Environment, use the property-set interface of any secondary
buffer. (The set affects the primary buffer's operation, not the secondary
buffer's operation.) You call Set on the interface:
unsigned long envId=EAX_ENVIRONMENT_AUDITORIUM;
pReverb->Set(DSPROPSETID_EAX_ReverbProperties,

DSPROPERTY_EAX_ENVIRONMENT,
NULL,0,&envId,sizeof(unsigned long));

The first argument is the GUID of the EAX listener property set; the second is
the ID of the property you want to set (a constant defined in EAX.H), in this
case Environment. The remaining arguments are set to ignore parameter and
point to a property value, just as in the previous example.

When you set Environment, EAX automatically sets values for the other three
listener properties, which are defined internally as part of the environment.

EAX.fm Page 16 Monday, August 31, 1998 12:06 PM

Environmental Audio eXtensions 17

Tweaking the Environment

Once you set an environment, you can tweak the environment by setting the
other three listener properties: Volume, Decay Time, Damping. Set them just
as you do Environment. This example sets Volume:
float volume=0.5F;
pReverb->Set(DSPROPSETID_EAX_ReverbProperties, DSPROPERTY_EAX_VOLUME,
 NULL,0,&volume,sizeof(float));

Setting All the Listener Properties at Once

To set all the listener properties at once, you call Set on a property-set interface
just as you did in the last example, but the ID you use to specify a property—
DSPROPERTY_EAX_ALL— specifies all listener properties in this case.
And the value you pass to the Set method is an array of four values instead of a
single value:
EAX_REVERBPROPERTIES props={EAX_ENVIRONMENT_AUDITORIUM, 0.5F,4.0F,0.5F};
pReverb->Set(DSPROPSETID_EAX_ReverbProperties, DSPROPERTY_EAX_ALL, NULL,

0, &props, sizeof(EAX_REVERBPROPERTIES));

The values in the array apply to the listener properties in this order:

• Environment (DSPROPERTY_EAX_ENVIRONMENT)

• Volume (DSPROPERTY_EAX_VOLUME)

• Decay Time (DSPROPERTY_EAX_DECAYTIME)

• Damping (DSPROPERTY_EAX_DAMPING)

You can read more about these individual properties in “Listener Property Set”
on page 25.

Setting a Reverb Preset

The EAX.H file contains a set of defined presets. Each preset is an array of
four listener property values in the same order used to set all properties at once
(as just described). You may, if you like, define your own presets as well.

To use a preset, call Set on a property-set interface using the property
DSPROPERTY_EAX_ALL just as in the previous example, but pass a preset
constant in place of the array. Here’s an example using the custom preset
EAX_PRESET_AUDITORIUM :
EAX_REVERBPROPERTIES preset={EAX_PRESET_AUDITORIUM};
pReverb->Set(DSPROPSETID_EAX_ReverbProperties, DSPROPERTY_EAX_ALL,

NULL, 0,
&preset, sizeof(EAX_REVERBPROPERTIES));

EAX.fm Page 17 Monday, August 31, 1998 12:06 PM

18 Environmental Audio eXtensions

The following table lists by constant ID the presets available in the audio
driver. Each preset is followed by the four listener property values that define
each of the presets.

Preset Base Environment Volume
Decay
Time Damping

EAX_PRESET_GENERIC EAX_ENVIRONMENT_
GENERIC

0.5F 1.493F 0.5F

EAX_PRESET_PADDEDCELL EAX_ENVIRONMENT_
PADDEDCELL

0.25F 0.1F 0.0F

EAX_PRESET_ROOM EAX_ENVIRONMENT_
ROOM

0.417F 0.4F 0.666F

EAX_PRESET_BATHROOM EAX_ENVIRONMENT_
BATHROOM

0.653F 1.499F 0.166F

EAX_PRESET_LIVINGROOM EAX_ENVIRONMENT_
LIVINGROOM

0.208F 0.478F 0.0F

EAX_PRESET_STONEROOM EAX_ENVIRONMENT_
STONEROOM

0.5F 2.309F 0.888F

EAX_PRESET_AUDITORIUM EAX_ENVIRONMENT_
AUDITORIUM

0.403F 4.279F 0.5F

EAX_PRESET_CONCERTHALL EAX_ENVIRONMENT_
CONCERTHALL

0.5F 3.961F 0.5F

EAX_PRESET_CAVE EAX_ENVIRONMENT_CAVE 0.5F 2.886F 1.304F
EAX_PRESET_ARENA EAX_ENVIRONMENT_ARENA 0.361F 7.284F 0.332F
EAX_PRESET_HANGAR EAX_ENVIRONMENT_HANGAR 0.5F 10.0F 0.3F
EAX_PRESET_CARPETEDHALLWAY EAX_ENVIRONMENT_

CARPETEDHALLWAY
0.153F 0.259F 2.0F

EAX_PRESET_HALLWAY EAX_ENVIRONMENT_
HALLWAY

0.361F 1.493F 0.0F

EAX_PRESET_STONECORRIDOR EAX_ENVIRONMENT_
STONECORRIDOR

0.444F 2.697F 0.638F

EAX_PRESET_ALLEY EAX_ENVIRONMENT_ALLEY 0.25F 1.752F 0.776F
EAX_PRESET_FOREST EAX_ENVIRONMENT_FOREST 0.111F 3.145F 0.472F
EAX_PRESET_CITY EAX_ENVIRONMENT_CITY 0.111F 2.767F 0.224F
EAX_PRESET_MOUNTAINS EAX_ENVIRONMENT_

MOUNTAINS
0.194F 7.841F 0.472F

EAX_PRESET_QUARRY EAX_ENVIRONMENT_QUARRY 1.0F 1.499F 0.5F
EAX_PRESET_PLAIN EAX_ENVIRONMENT_PLAIN 0.097F 2.767F 0.224F
EAX_PRESET_PARKINGLOT EAX_ENVIRONMENT_

PARKINGLOT
0.208F 1.652F 1.5F

EAX_PRESET_SEWERPIPE EAX_ENVIRONMENT_
SEWERPIPE

0.652F 2.886F 0.25F

EAX_PRESET_UNDERWATER EAX_ENVIRONMENT_
UNDERWATER

1.0F 1.499F 0.0F

EAX_PRESET_DRUGGED EAX_ENVIRONMENT_
DRUGGED

0.875F 8.392F 1.388F

EAX_PRESET_DIZZY EAX_ENVIRONMENT_
DIZZY

0.139F 17.234F 0.666F

EAX_PRESET_PSYCHOTIC EAX_ENVIRONMENT_
PSYCHOTIC

0.486F 7.563F 0.806F

EAX.fm Page 18 Monday, August 31, 1998 12:06 PM

Environmental Audio eXtensions 19

Note that these presets are defined to set the default Volume, Decay Time, and
Damping values that are associated with each Environment setting. For
example, using the preset EAX_PRESET_CONCERTHALL is the same as
setting Environment to EAX_ENVIRONMENT_CONCERTHALL . You
can use the preset definitions to see what default values are set by each
environment. You can also use the presets as starting points for your own
preset definitions.

Getting a Property Value

You can, at any time, check to see the current value of any EAX property. To
do so, you call Get on a secondary buffer’s property-set interface and identify
the property you want by GUID and property ID. For example:
float volume;
ULONG volsize;
pReverb->Get(DSPROPSETID_EAX_ReverbProperties,

DSPROPERTY_EAX_VOLUME, NULL,
0, &volume, sizeof(float), &volsize);

This example specifies the Volume property in the listener property set. Get
returns the value of Volume in the variable volume and writes the number of
bytes it wrote into volume into the variable volsize.

Setting Properties Using the CReverb and
CReverbBuffer Classes

If you’re programming in C++, you can use two C++ classes included with the
EAX SDK: CReverb and CReverbBuffer. These two classes create EAX
interfaces that make it simple to set EAX properties.

CReverb Class

CReverb defines an object that is an EAX interface for the primary buffer—the
listener. It works through the 3D interface of a secondary buffer.

Constructor
CReverb(LPDIRECTSOUND3DBUFFER p3DBuf)

The constructor takes a pointer to the 3D interface of a 3D secondary buffer.
Remember that this can be any secondary buffer; the settings that this class
works with affect only the primary buffer, not the secondary buffer. The object
works through the secondary buffer but not on it.

EAX.fm Page 19 Monday, August 31, 1998 12:06 PM

20 Environmental Audio eXtensions

Public Methods
int PropertySetOk()

This method checks to see if the audio driver supports the EAX listener
property set. When called, it returns a TRUE if EAX is supported, a FALSE if
not.
void SetEnvironment(unsigned long envId)

This method sets the Environment listener property. It accepts an unsigned
long integer (typically an environment constant from the EAX.H file) that
specifies the desired reverb environment. Remember that setting an
Environment value by itself automatically sets the Volume, Decay Time, and
Damping values to default values for the specified environment.
void SetVolume(float volume)

This method sets the Volume listener property. It accepts a floating point value
from 0.0 to 1.0. (See “Volume Property” on page 27 for details on what this
value sets.)
void SetDecayTime(float time)

This method sets the Decay Time listener property. It accepts a floating point
value from 0.1 to 20.0. (See “Decay Time Property” on page 27 for details on
what this value sets.)
void SetDamping(float damping)

This method sets the Damping listener property. It accepts a floating point
value from 0.0 to 2.0. (See “Damping Property” on page 28 for details on what
this value sets.)
Void SetAll(EAX_REVERBPROPERTIES *pProperties)

This method sets all four listener properties at one time. It accepts a pointer to
a four-value array of property values. The order of the values must be
Environment, Volume, Decay Time, and Damping.
void SetPreset(unsigned long envId, float volume, float time, float
 damping)

This method sets a preset, an array of all four property values defined in a
header file. Although it looks here as if it accepts four different property
values, in coding the method accepts a #defined preset constant that expands to
the four values before compiling.
unsigned long GetEnvironment()

This method returns the current Environment property value.
float GetVolume()

This method returns the current Volume property value.
float GetDecayTime()

EAX.fm Page 20 Monday, August 31, 1998 12:06 PM

Environmental Audio eXtensions 21

This method returns the current Decay Time property value.
float GetDamping()

This method returns the current Damping property value.
void GetAll(EAX_REVERBPROPERTIES *pProperties)

This method returns a pointer to all a four value array of all the current listener
property values in the order Environment, Volume, Decay Time, Damping.

CReverbBuffer

CReverbBuffer defines an object that is an EAX interface for a secondary
buffer—a sound source. It works through the 3D interface of the secondary
sound source.

Constructor
CReverbBuffer(LPDIRECTSOUND3DBUFFER p3DBuf)

The constructor takes a pointer to the 3D interface of the 3D secondary buffer
you want to set.

Public Methods
int PropertySetOk()

This method checks to see if the audio driver supports the EAX sound-source
property set. When called, it returns a TRUE if EAX is supported, a false if
not.
void SetReverbMix(float mix)

This method sets the Reverb Mix listener property. It accepts a floating point
value from 0.0 to 1.0. (See “Reverb Mix Property” on page 24 for details on
what this value sets.)
void SetAll(EAXBUFFER_REVERBPROPERTIES *pProperties)

This method sets all the sound-source properties at one time. It accepts a
pointer to an array of the property values you want to set. Because there’s only
a single property in the sound-source property set at present, there’s no need to
use this method.
float GetReverbMix()

This method returns the current Reverb Mix property value.
void GetAll(EAXBUFFER_REVERBPROPERTIES *pProperties)

This method returns a pointer to an array of all the current sound-source
property values. Because there’s only a single property in the sound-source
property set at present, there’s no need to use this method.

EAX.fm Page 21 Monday, August 31, 1998 12:06 PM

22 Environmental Audio eXtensions

Instantiating an EAX Class

You can create an EAX class using the class’s constructor and a pointer to the
3D interface of a secondary buffer. This example creates a CReverb object that
works through the 3D interface of secondary buffer 3Dbuf[0]:
#include "creverb.h"
CReverb *pReverb;
…

pReverb=new CReverb(p3Dbuf[0]);
if (!pReverb->PropertySetOk())

AfxMessageBox("EAX not supported");

Notice that this code sample calls PropertySetOK on the newly created
CReverb object to make sure that the audio driver supports EAX. Here’s a
code sample that creates a CReverbBuffer object for each secondary buffer
created by a program:
#include "crevbuf.h"
CReverbBuffer *pReverbBuffer[n];
…
pReverbBuffer[i]=new CReverbBuffer(p3Dbuf[i]);
if (!pReverbBuffer[i]->PropertySetOk())
AfxMessageBox("EAX not supported");

Setting Individual Properties

Once you’ve created an EAX interface using CReverb or CReverbBuffer, you
can use it to set individual properties for either the listener (through CReverb)
or a sound source (through CReverbBuffer). The following four calls set the
four listener properties through the CReverb object created in the previous
section:
pReverb->SetEnviroment(EAX_ENVIRONMENT_AUDITORIUM);
pReverb->SetVolume(0.5F);
pReverb->SetDecayTime(4.0F);
pReverb->SetDamping(0.5F);

The following statement sets the Reverb Mix property of a single secondary
buffer through the CReverbBuffer object created in the previous section:
pReverbBuffer[i]->SetReverbMix(1.0F);

Setting All Properties at One Time

If you want to set values for all four listener properties at once, you can do so
by calling SetAll and passing it a pointer to an array of four values:
EAX_REVERBPROPERTIES params = { EAX_ENVIROMENT_AUDITORIUM,

0.5F,4.0F,0.5F};
pReverb->SetAll(¶ms);

EAX.fm Page 22 Monday, August 31, 1998 12:06 PM

Environmental Audio eXtensions 23

Setting a Preset

To set all the listener properties at once by using a preset, call SetPreset:
pReverb->SetPreset(EAX_PRESET_SMALL_AUDITORIUM);

EAX_PRESET_SMALL_AUDITORIUM is a #define in a header file that
expands into a set of environment properties, so the preceding call is equivalent
to:
pReverb->SetPreset(EAX_ENVIROMENT_AUDITORIUM,0.5F,4.0F,0.5F};

if, of course, these are the four values defined by
EAX_PRESET_SMALL_AUDITORIUM.

EAX.fm Page 23 Monday, August 31, 1998 12:06 PM

24 Environmental Audio eXtensions

EAX Properties
EAX contains two property sets: the sound-source property set and the listener
property set. This section describes the properties of each set.

Sound-Source Property Set

The sound-source property set contains a single property that applies through a
property-set interface to a secondary buffer. To use this property, you must
specify the property-set GUID
DSPROPSETID_EAXBUFFER_ReverbProperties.

Reverb Mix Property

In a 3D aural world, the ratio of reverb to the sound source (called the wet/dry
ratio) is usually set by a sound source’s distance from the listener. If the source
is close, the wet/dry ratio is low—the sound source (dry) is close to the ear, so
you hear a lot of it. The reverb (wet) is reflected back from surrounding walls,
so it’s significantly less than the source sound. As the source moves away from
the listener, the dry component diminishes with distance while the wet
component remains approximately the same—so the wet/dry ratio goes up.
The rule of thumb is: the greater the distance between source and listener, the
higher the wet/ dry ratio.

If an application creates a 3D secondary buffer and doesn’t set Reverb Mix,
EAX automatically calculates the wet/dry ratio for this sound source,
increasing or decreasing the wet value to create a very realistic 3D effect.
(DirectSound itself increases or decreases the source’s volume (the dry value)
automatically as the source moves toward or away from the listener.) Most
applications never use Reverb Mix to override EAX’s reverb mix management.

If an application does want to override EAX, it sets Reverb Mix, which directly
controls the amount of reverb (wet) in the wet/dry ratio. The reverb value
range goes from 0.0 (no reverb at all added to the source) to 1.0 (the maximum
amount of reverb added to the source). Once the property is set, the wet value
remains the same until the property is reset. If the sound source moves toward
or away from the listener, the wet/dry ratio changes as DirectSound increases or
decreases the source volume while the reverb volume remains the same. If you
want to put Reverb Mix back under the control of EAX, you can set the value
using the constant EAX_REVERBMIX_USEDISTANCE .

Specify using this ID DSPROPERTY_EAXBUFFER_REVERBMIX

Value type Float

Value range 0.0 to 1.0

Default value EAX_REVERBMIX_USEDISTANCE

Value units A linear multiplication value

EAX.fm Page 24 Monday, August 31, 1998 12:06 PM

Environmental Audio eXtensions 25

Listener Property Set

The listener property set contains four properties that apply through a
secondary-buffer property-set interface to the primary buffer. To use these
properties, you must specify the property-set GUID
DSPROPSETID_EAX_ReverbProperties.

Environment Property

Environment is the fundamental listener property. You typically set it first and
then—if you want—modify it using the other three listener properties: Volume,
Decay Time, and Damping.

When you set an environment, you choose the acoustic surroundings of the
listener—the size of the virtual room around the listener and the reflective
qualities of its walls. When you modify the environment using the other
listener properties, you change overall reverb volume and the reflective quality
of the walls. The room size remains the same.

The size of the virtual room controls the length of time it takes the first echo to
come back from the walls—and hence the echo delay quality of the reverb.
Consider, for example, a vast canyon. When you shout into it, it may take a
second or two for the first echo to return; subsequent echoes follow it at similar
intervals. If you shout in an acoustically live concert hall, the first echo comes
back very quickly and is almost immediately awash in subsequent echoes,
creating a warm reverb sound instead of a series of distinct echoes. Setting an
environment with a large room size increases the time of the reverb’s echo
delay. The larger the room size, the more spacious the acoustic environment
feels.

EAX defines each environment internally. It not only defines the room size and
reflective wall qualities, it also defines the reverb model used for each
environment. The driver that supports EAX may, in fact, use entirely different
reverb algorithms for different environments.

To specify an environment, use an integer constant defined in the EAX.H file.
Those environment constants are:

• EAX_ENVIRONMENT_GENERIC

• EAX_ENVIRONMENT_PADDEDCELL

• EAX_ENVIRONMENT_ROOM

Specify using this ID DSPROPERTY_EAX_ENVIRONMENT

Value type Unsigned long

Value range 0 to EAX_MAX_ENVIRONMENT

Default value EAX_ENVIRONMENT_GENERIC

Value units Integers that each specify a specific environment

EAX.fm Page 25 Monday, August 31, 1998 12:06 PM

26 Environmental Audio eXtensions

• EAX_ENVIRONMENT_BATHROOM

• EAX_ENVIRONMENT_LIVINGROOM

• EAX_ENVIRONMENT_STONEROOM

• EAX_ENVIRONMENT_AUDITORIUM

• EAX_ENVIRONMENT_CONCERTHALL

• EAX_ENVIRONMENT_CAVE

• EAX_ENVIRONMENT_ARENA

• EAX_ENVIRONMENT_HANGAR

• EAX_ENVIRONMENT_CARPETEDHALLWAY

• EAX_ENVIRONMENT_HALLWAY

• EAX_ENVIRONMENT_STONECORRIDOR

• EAX_ENVIRONMENT_ALLEY

• EAX_ENVIRONMENT_FOREST

• EAX_ENVIRONMENT_CITY

• EAX_ENVIRONMENT_MOUNTAINS

• EAX_ENVIRONMENT_QUARRY

• EAX_ENVIRONMENT_PLAIN

• EAX_ENVIRONMENT_PARKINGLOT

• EAX_ENVIRONMENT_SEWERPIPE

• EAX_ENVIRONMENT_UNDERWATER

• EAX_ENVIRONMENT_DRUGGED

• EAX_ENVIRONMENT_DIZZY

• EAX_ENVIRONMENT_PSYCHOTIC

The name of each constant gives you a good idea of the environment’s acoustic
qualities: small room, large room, live surfaces, dead surfaces, and so forth.
EAX_ENVIRONMENT_GENERIC , environment 0, is the default
Environment setting. It specifies an average room size of the best possible
reverb quality.

Whenever you set the Environment property alone (that is, not as part of a set
of four property values at once), EAX automatically sets the values of the other
three listener properties to defaults for the specified environment.

The presets in the EAX.H file correspond one-to-one with the environment
constants. Each preset shows the default property values defined by each
environment; by reading the header file, you can learn those default values for
each environment.

EAX.fm Page 26 Monday, August 31, 1998 12:06 PM

Environmental Audio eXtensions 27

Volume Property

The Volume property is the master volume control for the reverb added to all
sound sources; it sets the maximum volume of all reverb added to the sound
mix in the primary buffer (the listener). Sound sources mixed into the primary
buffer may have reverb volumes that vary relative to each other. (The reverb
for each source is set by its wet/dry ratio as described in the Reverb Mix sound-
source property.) As the master reverb volume goes up and down, controlled
by Volume, the reverb for each sound source goes up or down in proportion.

The Reverb Volume property value is a linear amplitude value, not a linear
decibel value. The maximum value of 1.0 turns overall reverb up to its fullest
possible volume. Each time you halve the value, you halve the volume and
therefore drop it by 6 dB. For example, turning the volume down from 1.0 to
0.5 drops the volume by 6 dB. Turning it down from 1.0 to 0.25 drops 12 dB;
from 1.0 to 0.125 18 dB; and so on. Setting the volume to 0.0 turns off all
reverb completely.

Decay Time Property

Reverb decay is caused when a room’s surfaces absorb acoustic energy. Each
time an echo bounces off a surface, it decreases in volume until there is no
echo. If room surfaces are acoustically “live,” they absorb very little acoustic
energy, echoes diminish only gradually each time they bounce, and the reverb
(a mixture of all the echoes) takes a long time to decay. If room surfaces are
acoustically “dead,” reverb decays very quickly as acoustic energy is absorbed.

The Decay Time property effectively sets the acoustic properties of the virtual
room’s surfaces by setting the time in seconds it takes the reverb to diminish by
60 dB. When set to the maximum value (20 seconds), it simulates very live
surfaces; when set to the minimum value (0.1 seconds), it simulates very dead
surfaces with almost no reverb at all.

The quality of the reverb decay set by this property is affected by the next
property: Damping.

Specify using this ID DSPROPERTY_EAX_VOLUME

Value type Float

Value range 0.0 to 1.0

Default value Varies depending on the environment

Value units A linear amplitude value

Specify using this ID DSPROPERTY_EAX_DECAYTIME

Value type Float

Value range 0.1 to 20.0

Default value Varies depending on the environment

Value units Seconds

EAX.fm Page 27 Monday, August 31, 1998 12:06 PM

28 Environmental Audio eXtensions

Damping Property

The acoustic reflectivity of a room surface is not always even across all
frequencies. Some surfaces reflect more low and middle frequencies while
absorbing high frequencies. This high-frequency roll-off is called damping.

The Damping property sets the amount of damping applied to an environment.
Damping affects the decay time of the reverb as set by the property Decay
Time. The damping value 1.0 is neutral: the decay time is equal for high
frequencies and for low and middle frequencies. As the damping value
increases above 1.0, the high-frequency decay time increases so it’s longer than
the decay time of the middle and low frequencies. You hear a more brilliant
reverb. As the damping value decreases below 1.0, high-frequency decay time
decreases so it’s shorter than the decay time of the middle and low frequencies.
You hear a more muffled reverb.

Specify using this ID DSPROPERTY_EAX_DAMPING

Value type Float

Value range 0.0 to 2.0

Default value Varies depending on the environment

Value units A multiplier value

EAX.fm Page 28 Monday, August 31, 1998 12:06 PM

Environmental Audio eXtensions 29

Creating an EAX Object
The global reverb object (listener object) is created by calling the
QueryInterface function on a secondary 3D buffer even though using that
object will affect all 3D buffers. This may cause a potential problem if EAX
settings are asserted after the 3D buffer has been released. To prevent this,
reestablish the EAX listener object through another 3D buffer. It may be
prudent to create a small dummy 3D buffer and keep that buffer open for the
life of the game. The following sample code shows you how to create the
listerner object with this dummy buffer in mind:
#define PSET_SETGET (KSPORPERTY_SUPPORT_GET|KSPROPERTY_SUPPORT_SET)

// local small dummy buffer
static LPDIRECTSOUNDBUFFER pBuffer=NULL; // dummy DS buffer

//---//
//
// EAXCreate
//
// DESCRIPTION:
// Opens an EAX environment if one is available
//
// PARAMETERS:
// pDS: direct sound object
//
// RETURNS:
// EAX object pointer, NULL if none can be found
//---//

LPKSPROPERTYSET EAXCreate(LPDIRECTSOUND pDS)
 {
 WAVEFORMATEX fmt={WAVE_FORMAT_PCM,2,44100,176400,4,16,0};

// for dummy 3D buffer
 DSBUFFERDESC desc;
 LPDIRECTSOUND3DBUFFER p3DBuf; // 3D buffer interface
 LPKSPROPERTYSET pEAX; // property set interface
 unsigned long support=0; // variable to hold support status

 // Make sure previous dummy buffer has been released
 if (pBuffer)
 {
 IDirectSoundBuffer_Release(pBuffer);
 pBuffer=NULL;
 }

 // Create the dummy buffer
 memset(&desc, 0, sizeof(DSBUFFERDESC));
 desc.dwSize = sizeof(DSBUFFERDESC);
 desc.dwFlags = DSBCAPS-STATIC | DSBCAPS_CTRL3D;
 desc.dwBufferBytes = 128;
 desc.lpwfxFormat = &fmt;
 if (IDirectSound_CreateSoundBuffer(pDS,&desc,&pBuffer,NULL) != DS_OK)
 return NULL;

 // Create a 3D buffer interface
 if (IDirectSoundBuffer_QueryInterface(pBuffer,
 &IID_IDirectSound3DBuffer,&p3DBuf) != DS_OK
 || IDirectSound3DBuffer_QueryInterface(p3DBuf,&IID_IKsPropertySet,
 &pEAX) != DS_OK)

EAX.fm Page 29 Monday, August 31, 1998 12:06 PM

30 Environmental Audio eXtensions

 {
 IDirectSoundBuffer_Release(pBuffer);
 pBuffer=NULL;
 return NULL;
 }

 // Create the EAX reverb interface
 if (IKsPropertySet_QuerySupport(pEAX,&DSPROPSETID_EAX_ReverbProperties,
 DSPROPERY_EAX_ALL,&support) != DS_OK
 || (support & PSET_SETGET) != PSET_SETGET)
 {
 IDirectSoundBuffer_Release(pBuffer);
 pBuffer=NULL;
 pEAX=NULL;
 }

 return pEAX;
 }

//---//
//
// EAXrelease
//
// DESCRIPTION:
// Closes an EAX environment
//
// PARAMETERS:
// pEAX: EAX object
//
// RETURNS:
// EAX object pointer, NULL if none can be found
//---//

void EAXRelease(LPKSPROPERTYSET pEAX)
 {
 if (pEAX)
 IKsPropertySet_Release(pEAX);
 if (pBuffer)
 {
 IDirectSoundBuffer_Release(pBuffer);
 pBuffer=NULL;
 }
 }

EAX.fm Page 30 Monday, August 31, 1998 12:06 PM

Environmental Audio eXtensions 31

Future Plans for EAX
EAX is not a static development environment. We, at Creative, intend to
constantly increase its capabilities to take advantage of advanced reverb
properties offered by audio cards. Most of these advances will be transparent
to programmers because they’ll be incorporated into existing EAX
environments. You use the environments as you always have; the EAX
advancements simply make the environments sound even better.

We’re also at work to turn EAX into an integrated component of DirectSound,
which will allow developers to use EAX’s reverb effects without going through
a property-set interface. This also means that the same reverb effects will be
simulated in software if an audio card doesn’t exist to add them.

If you have ideas on future directions for EAX, please send them to
mauchly@ensoniq.com.

EAX.fm Page 31 Monday, August 31, 1998 12:06 PM

EAX.fm Page 32 Monday, August 31, 1998 12:06 PM

